If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-40q+200=0
a = 1; b = -40; c = +200;
Δ = b2-4ac
Δ = -402-4·1·200
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{2}}{2*1}=\frac{40-20\sqrt{2}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{2}}{2*1}=\frac{40+20\sqrt{2}}{2} $
| x+3x5=40 | | x+2x2=15 | | 3x^2-13=95 | | 100-4x=0x=-25 | | -20=28-6u | | x2=7x+8 | | b/7-71=-65 | | -a+15=13a=2 | | 5(j+1)=60 | | y=-4+21 | | 5^x-5^x-2=120 | | h/2-9=1 | | 4w+7=11w=-1 | | 10d-17=3 | | 9(s+3)=54 | | 110+4x+x+103=x+243 | | Y=6/5x-3 | | 8+2q=20 | | n+29/7=7 | | 31=6c-11 | | 13=5+2d | | 7x+10x+18=52 | | 2x3/2=6 | | 4x2-13x–12=0 | | n/3=14n-9 | | 65=54d-9 | | 6(3y+7)=-5(-6-3y)+4y | | 6x+13=14x-33=180 | | 5(2p+4)+2p+4=3(3+8) | | 2x^2+3x-550=0 | | F(x)=2(4)^x | | v^2-4v=60 |